题目内容

已知数列{an}满足a1=2,对于任意的n∈N,都有an>0,且(n+1)a+anan+1-na=0,又知数列{bn}:b1=2n-1+1
(1)求数列{an}的通项an以及它的前n项和Sn;
(2)求数列{bn}的前n项和Tn;
(3)猜想Sn和Tn的大小关系,并说明理由.
(1)见解析(2)(3)见解析
(Ⅰ)∵


,∴。                                                             




∴又,∴。                                                                        

。                                                          
(Ⅱ)∵


。                                                                                
(Ⅲ)
时,,∴
时,,∴
时,,∴
时,,∴
时,,∴
时,,∴。                          
猜想:当时,。                                                             
。亦即
下面用数学归纳法证明:
时,前面已验证成立;                                          
假设时,成立,那么当时,


∴当时,也成立。                    
由以上可知,当时,有;当时,
时,。                                                              
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网