题目内容

2.把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},若an=2015,则n=1030.

分析 根据题意,分析图乙,可得其第k行有k个数,则前k行共有$\frac{k(k+1)}{2}$个数,第k行最后的一个数为k2,从第三行开始,以下每一行的数,从左到右都是公差为2的等差数列;进而由442<2015<452,可得2015出现在第45行,又由第45行第一个数为442+1=1937,由等差数列的性质,可得该行第40个数为2015,由前44行的数字数目,相加可得答案.

解答 解:分析图乙,可得①第k行有k个数,则前k行共有$\frac{k(k+1)}{2}$个数,
②第k行最后的一个数为k2
③从第三行开始,以下每一行的数,从左到右都是公差为2的等差数列,
又由442=1936,452=2025,则442<2015<452
则2015出现在第45行,
第45行第一个数为442+1=1937,这行中第$\frac{2015-1937}{2}+1$=40个数为2015,
前44行共有$\frac{44×45}{2}$=990个数,则2015为第990+40=1030个数.
故答案为:1030.

点评 本题考查归纳推理的运用,关键在于分析乙图,发现每一行的数递增规律与各行之间数字数目的变化规律,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网