题目内容

10.已知矩阵A=$|\begin{array}{l}{1}&{-2}\\{-2}&{-1}\end{array}|$,B=$|\begin{array}{l}{5}\\{-15}\end{array}|$满足AX=B,求矩阵X.

分析 设X=$[\begin{array}{l}{a}\\{b}\end{array}]$,直接计算即可.

解答 解:设X=$[\begin{array}{l}{a}\\{b}\end{array}]$,
∵矩阵A=$|\begin{array}{l}{1}&{-2}\\{-2}&{-1}\end{array}|$,B=$|\begin{array}{l}{5}\\{-15}\end{array}|$满足AX=B,
∴$[\begin{array}{l}{1}&{-2}\\{-2}&{-1}\end{array}]$$[\begin{array}{l}{a}\\{b}\end{array}]$=$[\begin{array}{l}{5}\\{-15}\end{array}]$,
化简得$\left\{\begin{array}{l}{a-2b=5}\\{-2a-b=-15}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=7}\\{b=1}\end{array}\right.$,
此时X=$[\begin{array}{l}{7}\\{1}\end{array}]$.

点评 本题考查矩阵的计算,弄清矩阵乘积的定义是解决本题的关键,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网