题目内容
(本小题满分13分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为.
(1)求椭圆的方程。
(2)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。
(1)求椭圆的方程。
(2)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。
(1) (2)定值为
试题分析:(1)由题意可知:a+c= +1 ,c=1
∴a=, ∴所求椭圆的方程为:
(2)设直线l的方程为:y=k(x-1)A(x1,y1) ,B(x2,y2),M(,0)联立
则
,
为定值
点评:直线与椭圆相交,常用到韦达定理使计算简化,圆锥曲线中的向量运算常转化为点的坐标运算,本题有一定难度
练习册系列答案
相关题目