题目内容
如图,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.
(Ⅰ)求证:BE=EB1;
(Ⅱ)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(右下图)
(Ⅰ)在截面A1EC内,过E作EG⊥A1C,G是垂足.
① ∵______________
∴EG⊥侧面AC1;取AC的中点F,连结BF,FG,由AB=BC得BF⊥AC,
② ∵______________
∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③ ∵_______________
∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④ ∵______________
∴FG∥AA1,△AA1C∽△FGC,
⑤ ∵________________
∴,即
解析:
(Ⅰ)①∵面A1EC⊥侧面AC1, ②∵面ABC⊥侧面AC1, ③∵BE∥侧面AC1, ④∵BE∥AA1, ⑤∵AF=FC, (Ⅱ)解:分别延长CE、C1B1交于点D,连结A1D. ∵∥, ∴ ∵∠B1A1C1=∠B1 C1A1=60°, ∠DA1B1=∠A1DB1=(180°-∠D B1A1)=30°, ∴∠DA1C1=∠DA1B1+∠B1A1C1=90°,即⊥ ∵CC1⊥面A1C1B1,即A1C1是A1C在平面A1C1D上的射影,根据三垂线定理得DA1⊥A1C, 所以∠CA1C1是所求二面角的平面角. ∵CC1=AA1=A1B1=A1C1,∠A1C1C=90°, ∴∠CA1C1=45°,即所求二面角为45°
|
A、
| ||||
B、
| ||||
C、
| ||||
D、1 |