题目内容

如图,在正三棱柱ABCA1B1C1中,EBB1,截面A1EC侧面AC1

()求证:BE=EB1;

()AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.

注意:在下面横线上填写适当内容,使之成为()的完整证明,并解答()(右下图)

()在截面A1EC内,过EEGA1CG是垂足.

∵______________

EG侧面AC1;AC的中点F,连结BFFG,由AB=BCBFAC

∵______________

BF侧面AC1;BFEGBFEG确定一个平面,交侧面AC1FG

∵_______________

BEFG,四边形BEGF是平行四边形,BE=FG

∵______________

FGAA1AA1C∽△FGC

∵________________

,即

 

答案:
解析:

(Ⅰ)①∵面A1EC⊥侧面AC1

     ②∵面ABC⊥侧面AC1

     ③∵BE∥侧面AC1

     ④∵BEAA1

     ⑤∵AF=FC,    

 (Ⅱ)解:分别延长CEC1B1交于点D,连结A1D

∵∠B1A1C1=∠B1 C1A1=60°,

DA1B1=∠A1DB1=(180°-∠D B1A1)=30°,

∴∠DA1C1=∠DA1B1+∠B1A1C1=90°,即

CC1⊥面A1C1B1,即A1C1A1C在平面A1C1D上的射影,根据三垂线定理得DA1A1C

所以∠CA1C1是所求二面角的平面角.                 

CC1=AA1=A1B1=A1C1,∠A1C1C=90°,

∴∠CA1C1=45°,即所求二面角为45°              

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网