题目内容

如图,在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD与平面AA1CC1所成的角为a,则sina=
 
分析:根据题意画出图形,过B作BF⊥AC,过B1作B1E⊥A1C1,连接EF,过D作DG⊥EF,连接AG,证明DG⊥面AA1C1C,∠DAG=α,解直角三角形ADG即可.
解答:精英家教网解:如图所示,过B作BF⊥AC,过B1作B1E⊥A1C1,连接EF,过D作DG⊥EF,连接AG,
在正三棱柱中,有B1E⊥面AA1C1C,BF⊥面AA1C1C,
故DG⊥面AA1C1C,
∴∠DAG=α,可求得DG=BF=
3
2

AD=
AB2+BD2
=
2

故sinα=
DG
AD
=
6
4
     
故答案为
6
4
点评:考查直线和平面所成的角,关键是找到斜线在平面内的射影,把空间角转化为平面角求解,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网