题目内容

精英家教网直角三角形ABC中,∠C=90°,B、C在x轴上且关于原点O对称,D在边BC上,BD=3DC,△ABC的周长为12.若一双曲线E以B、C为焦点,且经过A、D两点.
(1)求双曲线E的方程;
(2)若一过点P(3,0)的直线l与双曲线E相交于不同于双曲线顶点的两点M、N,且
MP
PN
,问在x轴上是否存在定点G,使
BC
⊥(
GM
GN
)
?若存在,求出所有这样定点G的坐标;若不存在,请说明理由.
分析:(1)设出双曲线的方程,则可表示出B,C,D坐标,根据BD=3DC求得a和c的关系,进而利用双曲线的定义以及三角形的周长建立方程组求得a,进而求得c和b,则双曲线的方程可得.
(2)在x轴上存在定点G使题设成立,设出直线l的方程,根据
MP
PN
求得x1-t=λ(x2-t),把直线方程代入椭圆方程消去y,利用韦达定理表示出x1+x2和x1x2,进而求得t,则定点G的坐标可求.
解答:解:(1)解:设双曲线E的方程为
x2
a2
-
y2
b2
=1  (a>0,b>0)

则B(-c,0),D(a,0),C(c,0).
由BD=3DC,得c+a=3(c-a),即c=2a
|AB|2-|AC|2=16a2
|AB|+|AC|=12-4a
|AB|-|AC|=2a.

解之得a=1,∴c=2,b=
3

∴双曲线E的方程为x2-
y2
3
=1

(2)解:设在x轴上存在定点G(t,0),使
BC
⊥(
GM
GN
)

当l⊥x轴时,由
MP
PN
,显然成立
当l与x轴不垂直时,设直线l的方程为y=k(x-3),M(x1,y1),N(x2,y2
MP
PN
,即(3-x1,y1)=λ(x2-3,y2),即3-x1=λ(x2-3),即λ=
3-x1
x2-3

BC
=(4,0)
GM
GN
=(x1-t-λx2+λt,y1y2)

BC
⊥(
GM
GN
)
?x1-t=λ(x2-t),将λ=
3-x1
x2-3
代入得2x1x2-(3+t)(x1+x2)+6t=0①
将y=k(x-3)代入方程为x2-
y2
3
=1
整理得得:(3-k2)x2-6k2x-9k2-3=0
其中k2-3≠0且△>0,即k2
3
x1+x2=
-6k2
3-k2
, x1x2=
-9k2-3
3-k2

代入①,得:
-18k2-6
3-k2
+
6(t+3)k2
3-k2
+6t=0
,化简得:t=
1
3

因此,在x轴上存在定点G(
1
3
,0)
,使
BC
⊥(
GM
GN
)
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了学生分析问题,解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网