题目内容

直角三角形ABC中,斜边BC长为2,O是平面ABC内一点,点
-m
满足
OP
=
OA
+
1
2
(
AB
+
AC
)
,则|
AP
|
=
 
分析:把已知的等式进行等价变形得
AP
=
1
2
AB
+
AC
),求向量模可先求平方,最后利用直角三角形即可求出所求.
解答:解:∵动点P满足
OP
=
OA
+
1
2
(
AB
+
AC
)

AP
=
1
2
AB
+
AC
),
|
AP
|
2=
1
4
(AB2+AC2+2
AB
AC
)=
1
4
(4+0)=1
故答案为:1.
点评:本题考查向量的加减运算,两个向量的数量积,体现了等价转化的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网