题目内容

已知P:|1-
x-1
3
|≤2,Q:x2-2x+1-m2≤0(m>0)
,又知非P是非Q的必要非充分条件,则m的取值范围是______.
由|1-
x-1
3
|≤2,得|x-4|≤6,解得-2≤x≤10.即P:-2≤x≤10.
由x2-2x+1-m2≤0,得[x-(1-m)][x-(1+m)]≤0,
∵m>0,
∴1-m<1+m,
∴不等式的解为1-m≤x≤1+m,
即Q:1-m≤x≤1+m.
∵非P是非Q的必要不充分条件,
∴Q是P的必要不充分条件,
1-m≤-1
1+m≤6

解得
m≥2
m≤5
,即2≤m≤5.
∴m的取值范围是2≤m≤5.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网