题目内容

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(π﹣B)
(1)求角B的大小;
(2)若b=4,△ABC的面积为 , 求a+c的值.

【答案】解:(1)因为bcosA=(2c+a)cos(π﹣B),
所以sinBcosA=(﹣2sinC﹣sinA)cosB
所以sin(A+B)=﹣2sinCcosB
∴cosB=﹣
∴B=
(2)由=acsinB=得ac=4
由余弦定理得b2=a2+c2+ac=(a+c)2﹣ac=16
∴a+c=2
【解析】(1)利用正弦定理化简bcosA=(2c+a)cos(π﹣B),通过两角和与差的三角函数求出cosB,即可得到结果.
(2)利用三角形的面积求出ac=4,通过由余弦定理求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网