题目内容
【题目】已知等比数列前n项,前2n项,前3n项的和分别为Sn,S2n,S3n,求证:=Sn(S2n+S3n).
【答案】证明见解析
【解析】试题分析:
设此等比数列的公比为q,首项为a1,分类讨论:
当q=1时,则Sn=na1,S2n=2na1,S3n=3na1,满足,
当q≠1时,则Sn=,S2n=,S3n=,据此计算可知也满足.
综上可得题中的等式成立.
试题解析:
设此等比数列的公比为q,首项为a1,
当q=1时,则Sn=na1,S2n=2na1,S3n=3na1,
S+S=n2a+4n2a=5n2a,Sn(S2n+S3n)=na1(2na1+3na1)=5n2a,
∴S+S=Sn(S2n+S3n).
当q≠1时,则Sn=,S2n=,S3n=,
∴S+S=·[(1-qn)2+(1-q2n)2]=·(1-qn)2·(2+2qn+q2n).
又Sn(S2n+S3n)=·(1-qn)2·(2+2qn+q2n),∴S+S=Sn(S2n+S3n).
【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡的株数:
温度(单位:℃) | 21 | 23 | 24 | 27 | 29 | 32 |
死亡数(单位:株) | 6 | 11 | 20 | 27 | 57 | 77 |
经计算:,,,.
其中分别为试验数据中的温度和死亡株数,.
(1)与是否有较强的线性相关性? 请计算相关系数(精确到)说明.
(2)并求关于的回归方程(和都精确到);
(3)用(2)中的线性回归模型预测温度为时该批紫甘薯死亡株数(结果取整数).
附:对于一组数据,,……,,
①线性相关系数,通常情况下当大于0.8时,认为两
个变量有很强的线性相关性.
②其回归直线的斜率和截距的最小二乘估计分别为:
;
【题目】为了选拔参加自行车比赛的选手,对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)画出茎叶图,由茎叶图你能获得哪些信息;
(2)估计甲、乙两运动员的最大速度的平均数和方差,并判断谁参加比赛更合适.