题目内容

4.已知△ABC的三个内角A、B、C的对边分别是a、b、c,且acosB+bcosA=3a,则$\frac{c}{a}$=3.

分析 先利用正弦定理把a和b的表达式代入acosB+bcosA中,利用了两角和公式化简整理,求得acosB+bcosA=2RsinC,进而把2RsinC转化成边,即可得解.

解答 解:由正弦定理得:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,
∴左=acosB+bcosA=2RsinAcosB+2RsinBcosA
=2Rsin(B+A)=2RsinC=c=右=3a,
∴$\frac{c}{a}$=3.
故答案为:3.

点评 本题主要考查了正弦定理的应用.解题的关键是利用正弦定理完成了边角问题的互化,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网