题目内容

6.数列{an}满足nan+1-(n+1)an=0,已知a1=2.
(I)求数列{an}的通项公式;
(Ⅱ)若bn=$\frac{1}{4}{a_{2n}}{a_{2n+1}}$,bn的前n项和为Sn,求证:Sn<$\frac{1}{3}$.

分析 (I)通过nan+1=(n+1)an可得$\frac{{a}_{n+1}}{n+1}$=2,进而可得结论;
(II)通过an=2n可得bn=2n(2n+1),放缩即得$\frac{1}{{b}_{n}}$<$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),并项相加即得结论.

解答 (I)解:∵nan+1=(n+1)an
∴$\frac{{{a_{n+1}}}}{n+1}=\frac{a_n}{n}=\frac{a_1}{1}=2$,
∴an+1=2(n+1),∴an=2n;
(II)证明:∵an=2n,∴a2n=4n,a2n+1=2(2n+1),
∴${b_n}=\frac{1}{4}4n•2(2n+1)=2n(2n+1)$,
∴$\frac{1}{b_n}=\frac{1}{2n(2n+1)}<\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴${S_n}=\frac{1}{b_1}+\frac{1}{b_2}+…+\frac{1}{b_n}≤\frac{1}{6}+\frac{1}{2}(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$
=$\frac{1}{3}-\frac{1}{4n+2}<\frac{1}{3}$(n∈N*).

点评 本题考查求数列的通项及数列的和的范围,利用放缩法及并项相加法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网