题目内容

【题目】某中学调查了某班全部 45 名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

参加书法社团

未参加书法社团

参加演讲社团

8

5

未参加书法社团

2

30

(1)从该班随机选 1 名同学,求该同学至少参加上述一个社团的概率;

(2)在既参加书法社团又参加演讲社团的 8 名同学中,有 5 名男同学,3名女同学.现从这 5 名男同学和 3 名女同学中各随机选 1 人,求被选中且未被选中的概率.

【答案】(1).

(2).

【解析】分析:(1)先判断出这是一个古典概型,所以求出基本事件总数,“至少参加一个社团”事件包含的基本事件个数,从而根据古典概型的概率计算公式计算即可;

(2)先求基本事件总数,即从这5名男同学和3名女同学中各随机选1人,有多少种选法,再求出“被选中且未被选中”事件包含的基本事件个数,然后根据古典概型的概率公式计算即可.

解析:(1)从45个人中随机选一人的可能结果有45种,参加社团的同学共有8+5+2=15人,故所求概率

.

(2)从5名男同学和3名女同学中各随机选取一人,则所有的可能结果有:

共15种,

其中选中未被选中的结果有2种,故所求概率为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网