题目内容

【题目】已知|a|4|b|8ab的夹角是120°.

(1) 计算:① |ab|,② |4a2b|


(2) 当k为何值时,(a2b)⊥(kab)?

【答案】(1)① 4.② 16(2)k=-7

【解析】试题分析(1)①将式子先平方,转化为向量数量积,根据向量数量积定义求值,最后开方,②将式子先平方,转化为向量数量积,根据向量数量积定义求值,最后开方(2)由向量垂直得数量积为零,根据多项式法则展开向量,根据向量数量积定义求值,得关于k的关系式,解方程可得k值

试题解析:解:由已知得a·b=4×8×=-16.

(1) ① ∵ |ab|2a22a·bb2=16+2×(-16)+64=48,∴ |ab|=4.

② ∵ |4a2b|216a216a·b4b2=16×16-16×(-16)+4×64=768,

|4a2b|=16.

(2) ∵ (a2b)⊥(kab),

(a2b)·(kab)=0,

ka2+(2k-1)a·b2b2=0,

即16k-16(2k-1)-2×64=0,

∴ k=-7.

即k=-7时,a2b与kab垂直.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网