题目内容

18.已知实数x,y满足$\left\{\begin{array}{l}x+y+1≥0\\ 2x-y+2≥0\end{array}\right.$,若(-1,0)是使ax+y取得最大值的可行解,则实数a的取值范围是(-∞,-2].

分析 作出不等式组对应的平面区域,根据目标函数z=ax+y在点(-1,0)有最优解,结合图形即可求出实数a的取值范围.

解答 解:可行域如图:
直线2x-y+2=0的斜率为2,
要使ax+y在(-1,0)处取得最大值,
则ax+y对应的直线的斜率k≥2,
所以-a≥2,即a≤-2.
故答案为:(-∞,-2].

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值的方法反求参数的范围,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网