题目内容

【题目】设f(x)=|x﹣a|,a∈R
(Ⅰ)当a=5,解不等式f(x)≤3;
(Ⅱ)当a=1时,若x∈R,使得不等式f(x﹣1)+f(2x)≤1﹣2m成立,求实数m的取值范围.

【答案】解:(I)a=5时原不等式等价于|x﹣5|≤3即﹣3≤x﹣5≤3,2≤x≤8,
∴解集为{x|2≤x≤8};
(II)当a=1时,f(x)=|x﹣1|,

由图象知:当 时,g(x)取得最小值 ,由题意知:
∴实数m的取值范围为

【解析】(Ⅰ)将a=5代入解析式,然后解绝对值不等式,根据绝对值不等式的解法解之即可;(Ⅱ)先利用根据绝对值不等式的解法去绝对值,然后利用图象研究函数的最小值,使得1﹣2m大于等于不等式左侧的最小值即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网