题目内容

【题目】已知幂函数 在(0,+∞)上为增函数,g(x)=f(x)+2
(1)求m的值,并确定f(x)的解析式;
(2)对于任意x∈[1,2],都存在x1 , x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2),若f(x1)=g(x2),求实数t的值;
(3)若2xh(2x)+λh(x)≥0对于一切x∈[1,2]成成立,求实数λ的取值范围.

【答案】
(1)解:由幂函数的定义可知:m2+m﹣1=1 即m2+m﹣2=0,

解得:m=﹣2,或m=1,

∵f(x)在(0,+∞)上为增函数,∴﹣2m2+m+3>0,解得﹣1<m<

综上:m=1

∴f(x)=x2


(2)解:g(x)=﹣x2+2|x|+t

据题意知,当x∈[1,2]时,fmax(x)=f(x1),gmax(x)=g(x2

∵f(x)=x2在区间[1,2]上单调递增,

∴fmax(x)=f(2)=4,即f(x1)=4

又∵g(x)=﹣x2+2|x|+t=﹣x2+2x+t=﹣(x﹣1)2+1+t

∴函数g(x)的对称轴为x=1,∴函数y=g(x)在区间[1,2]上单调递减,

∴gmax(x)=g(1)=1+t,即g(x2)=1+t,

由f(x1)=g(x2),得1+t=4,∴t=3


(3)解:当x∈[1,2]时,2xh(2x)+λh(x)≥0等价于2x(22x﹣22x)+λ(2x﹣2x)≥0

即λ(22x﹣1)≥﹣(24x﹣1),∵22x﹣1>0,∴λ≥﹣(22x+1)

令k(x)=﹣(22x+1),x∈[1,2],下面求k(x)的最大值;

∵x∈[1,2]∴﹣(22x+1)∈[﹣17,﹣5∴kmax(x)=﹣5

故λ的取值范围是[﹣5,+∞)


【解析】(1)由幂函数的定义得:m=﹣2,或m=1,由f(x)在(0,+∞)上为增函数,得到m=1,由此能求出f(x).(2)g(x)=﹣x2+2|x|+t,据题意知,当x∈[1,2]时,fmax(x)=f(x1),gmax(x)=g(x2),由此能求出t.(3)当x∈[1,2]时,2xh(2x)+λh(x)≥0等价于λ(22x﹣1)≥﹣(24x﹣1),由此能求出λ的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网