题目内容

设函数,其中为常数.
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)当时,求的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数,不等式都成立.

(1)当时, ,函数在定义域上单调递增
(2)时,有惟一极小值点
(3)由(2)可知当时,函数,此时有惟一极小值点故可以得到函数借助于单调性来证明不等式。

解析试题分析:解:(1)由题意知,的定义域为
    
时, ,函数在定义域上单调递增.  …………4分
(2)当有两个不同解, ,
此时 在定义域上的变化情况如下表:











极小值

由此表可知:时,有惟一极小值点,     ………8分
(3)由(2)可知当时,函数
此时有惟一极小值点
 
                      …… 11分
令函数
 
 13分
考点:导数的运用
点评:主要是考查了导数在研究函数中的运用,以及函数的极值,以及函数与不等式的综合运用,属于难度题。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网