题目内容

已知函数.
(1)试问该函数能否在处取到极值?若有可能,求实数的值;否则说明理由;
(2)若该函数在区间上为增函数,求实数的取值范围.

(1)P=1   (2) [0,1]

解析试题分析:解:(1)
若该函数能在处取到极值,则,
,此时,,函数为单调函数,这与
该函数能在处取到极值矛盾,则该函数不能在处取到极值.  (6)
(2)若该函数在区间上为增函数,
则在区间上,恒成立,
① 
② 
综上可知,.                     (12)
考点:导数研究函数的单调性
点评:本题考查用导数研究函数的单调性,这是导数的一个重要应用.本题中用导数建立参数的方程与不等式,这是导数与极值、最值结合的一种常见方式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网