题目内容
【题目】如图,在四棱锥中,底面为菱形,,为的中点.
(1)若,求证:;
(2)若,且,点在线段上,试确定点的位置,使二面角大小为,并求出的值.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)由,为的中点,得,又由底面为菱形,根据菱形的性质,证得,进而证得,即可证明;(2)以为坐标原点,分别以、、为轴、轴、轴建立空间直角坐标系,得平面和平面的一个法向量,根据二面角大小为,利用向量的运算,即可求解求出的值.
试题解析:⑴∵,为的中点,∴,又∵底面为菱形,,∴,又,∴,又∵,∴;
⑵∵,,,
∴,∴以为坐标原点,分别以、、为轴、轴、轴建立空间直角坐标系如图.
则,,,,设,
所以,平面的一个法向量是,
设平面的一个法向量为,
所以,∴∴.
取,
由二面角大小为,可得:,解得,此时.
【题目】2016年时红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神.首先在甲、乙、丙、丁四个不同的公园进行支持签名活动,其次在各公园签名的人中按分层抽样的方式抽取10名幸运之星,每人获得一个纪念品,其数据表格如下:
(Ⅰ)求此活动中各公园幸运之星的人数;
(Ⅱ)从乙和丙公园的幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;
(Ⅲ)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):
据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.
附临界值表及公式: ,其中
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【题目】某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如下列联表:
做不到科学用眼 | 能做到科学用眼 | 合计 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合计 | 75 | 25 | 100 |
(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数,试求随机变量的分布列和数学期望;
(2)若在犯错误的概率不超过的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.
附:独立性检验统计量,其中.
独立性检验临界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.840 | 5.024 |