题目内容
【题目】已知椭圆:的右焦点为,右顶点为,设离心率为,且满足,其中为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点(0,1)的直线与椭圆交于,两点,求面积的最大值.
【答案】(1) ;(2) .
【解析】试题分析:(Ⅰ)设椭圆的焦半距为c,结合题意分析可得,结合椭圆的几何性质可得a、b的值,代入椭圆的方程即可得答案;
(Ⅱ)由题意分析可得直线l与x轴不垂直,设其方程为y=kx+1,联立l与椭圆C的方程,可得(4k2+3)x2+8kx﹣8=0,结合根与系数的关系可以用k表示|MN|与O到l的距离,由三角形面积公式计算可得△OMN的面积 .,由基本不等式分析可得答案.
试题解析:
(Ⅰ)设椭圆的焦半距为,则,,.
所以,其中,又,联立解得,.
所以椭圆的方程是.
(Ⅱ)由题意直线不能与轴垂直,否则将无法构成三角形.
当直线与轴不垂直时,设其斜率为,那么的方程为.
联立与椭圆的方程,消去,得.
于是直线与椭圆由两个交点的充要条件是,这显然成立.
设点,.
由根与系数的关系得,.
所以 ,又到的距离.
所以的面 .
令,那么 ,当且仅当时取等号.
所以面积的最大值是.
【题目】2017年“一带一路”国际合作高峰论坛于今年5月14日至15日在北京举行.为高标准完成高峰论坛会议期间的志愿服务工作,将从27所北京高校招募大学生志愿者,某调查机构从是否有意愿做志愿者在某高校访问了80人,经过统计,得到如下丢失数据的列联表:(,表示丢失的数据)
无意愿 | 有意愿 | 总计 | |
男 | 40 | ||
女 | 5 | ||
总计 | 25 | 80 |
(1)求出的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;
(2)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.
附参考公式及数据: ,其中.
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的城市和交通拥堵严重的城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:
(Ⅰ)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求具体解答过程,给出结论即可);
(Ⅱ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认同”,请根据此样本完成此列联表,并局此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;
(Ⅲ)若此样本中的城市和城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自城市的概率是多少?
合计 | |||
认可 | |||
不认可 | |||
合计 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【题目】某市英才中学的一个社会实践调查小组,在对中学生的良好“光盘习惯”的调查中,随机发放了120份问卷,对收回的120份有效问卷进行统计,得到如下列联表:
做不到光盘 | 能做到光盘 | 合计 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合计 | 75 | 25 | 100 |
(1)现已按是否能做到光盘分层从45份女生问卷中抽取9份问卷,若从这9份问卷中随机抽取4份,并记其中能做到光盘的问卷的份数为,试求随机变量的分布列和数学期望;
(2)如果认为良好“光盘习惯”与性别有关犯错误的概率不超过,那么根据临界值表最精确的的值应为多少?请说明理由.
附:独立性检验统计量,其中.
独立性检验临界表: