题目内容
14.已知单调递增数列{an}的前n项和为Sn,满足Sn=$\frac{1}{2}$(an2+n).(1)求数列{an}的通项公式;
(2)设cn=$\left\{\begin{array}{l}{\frac{1}{{{a}_{n+1}}^{2}-1},n为奇数}\\{3×{2}^{{a}_{n+1}}+1,n为偶数}\end{array}\right.$,求数列{cn}的前n项和Tn.
分析 (1)当n=1时,a1=$\frac{1}{2}({a}_{1}^{2}+1)$,解得a1;当n≥2时,${S}_{n-1}=\frac{1}{2}({a}_{n-1}^{2}+n-1)$,利用an=Sn-Sn-1,化为(an-1+an-1)(an-1-an-1)=0,可得an-1+an-1=0,或an-1-an-1=0,由于数列{an}是单调递增数列,可得an-an-1=1.利用等差数列的通项公式即可得出.
(2)cn=$\left\{\begin{array}{l}{\frac{1}{{n}^{2}+2n},n为奇数}\\{3×{2}^{n+1}+1,n为偶数}\end{array}\right.$.$\frac{1}{{n}^{2}+2n}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,对n分类讨论,利用“裂项求和”、等比数列的前n项和公式即可得出.
解答 解:(1)当n=1时,a1=$\frac{1}{2}({a}_{1}^{2}+1)$,解得a1=1;
当n≥2时,${S}_{n-1}=\frac{1}{2}({a}_{n-1}^{2}+n-1)$,∴an=Sn-Sn-1=$\frac{1}{2}({a}_{n}^{2}-{a}_{n-1}^{2}+1)$,化为(an-1+an-1)(an-1-an-1)=0,
∴an-1+an-1=0,或an-1-an-1=0,
∵数列{an}是单调递增数列,
∴an-an-1=1.
∴an=1+(n-1)=n.
(2)cn=$\left\{\begin{array}{l}{\frac{1}{{n}^{2}+2n},n为奇数}\\{3×{2}^{n+1}+1,n为偶数}\end{array}\right.$.
$\frac{1}{{n}^{2}+2n}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$
当n为偶数时,Tn=(c1+c3+…+cn-1)+(c2+c4+…+cn)
=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{n-1}-\frac{1}{n+1})]$+3(23+25+…+2n+1)+$\frac{n}{2}$
=$\frac{1}{2}(1-\frac{1}{n+1})$+3×$\frac{8({4}^{\frac{n}{2}}-1)}{4-1}$+$\frac{n}{2}$
=$\frac{n}{2n+2}$+8(2n-1)+$\frac{n}{2}$.
当n为奇数时,Tn=(c1+c3+…+cn)+(c2+c4+…+cn-1)
=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n}-\frac{1}{n+2})]$+$3×({2}^{3}+{2}^{5}+…+{2}^{n})+\frac{n-1}{2}$
=$\frac{1}{2}(1-\frac{1}{n+2})$+3×$\frac{8({4}^{\frac{n-1}{2}}-1)}{4-1}$+$\frac{n-1}{2}$
=$\frac{n}{n+2}$+8(2n-1-1)+$\frac{n-1}{2}$.
∴Tn=$\left\{\begin{array}{l}{\frac{n}{n+2}+8({2}^{n}-1)+\frac{n-1}{2},n为奇数}\\{\frac{n}{2n+2}+8({2}^{n}-1)+\frac{n}{2},n为偶数}\end{array}\right.$.
点评 本题考查了“裂项求和”、等差数列与等比数列的通项公式及其、递推关系的应用,考查了推理能力与计算能力,属于难题.
A. | 1 | B. | -$\frac{1}{2}$ | C. | 1或-$\frac{1}{2}$ | D. | 1或$\frac{1}{2}$ |
A. | [-$\sqrt{5}$,$\sqrt{5}$] | B. | (-1,1) | C. | (-1,$\sqrt{5}$] | D. | (-1,2] |