题目内容
18.已知数列{an}中,a2=p(p为常数,且p≠0),Sn为某前n项和,若Sn=$\frac{1}{2}$n(an-a1)对一切n∈N*都成立.(1)证明:数列已知数列{an}为等差数列;
(2)记bn=$\frac{{S}_{n+2}}{{S}_{n+1}}$+$\frac{{S}_{n+1}}{{S}_{n+2}}$,求数列{bn}的前n项和Tn.
分析 (1)通过在Sn=$\frac{1}{2}$n(an-a1)中令n=2可知a1=0,进而通过Sn=$\frac{1}{2}$nan与Sn+1=$\frac{1}{2}$(n+1)an+1作差、整理可知$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n-1}$(n≥2),利用累乘法计算可知$\frac{{a}_{n}}{{a}_{2}}$=n-1,通过a2=p可知an=(n-1)p,即数列{an}为等差数列;
(2)通过(1)可知Sn+1=$\frac{n(n+1)}{2}$•d、Sn+2=$\frac{(n+1)(n+2)}{2}$•d,进而裂项、计算可知bn=2+2($\frac{1}{n}$-$\frac{1}{n+2}$),并项相加即得结论.
解答 (1)证明:在Sn=$\frac{1}{2}$n(an-a1)中令n=2,
可知a1+a2=a2-a1,即a1=0,
∴Sn=$\frac{1}{2}$nan,Sn+1=$\frac{1}{2}$(n+1)an+1,
两式相减得:2an+1=(n+1)an+1-nan,
整理得:$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n-1}$(n≥2),
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n-2}$,$\frac{{a}_{n-1}}{{a}_{n-2}}$=$\frac{n-2}{n-3}$,…,$\frac{{a}_{3}}{{a}_{2}}$=$\frac{2}{1}$,
累乘得:$\frac{{a}_{n}}{{a}_{2}}$=n-1,
又∵a2=p,
∴an=(n-1)p(n≥2),
又∵a1=0满足上式,
∴an=(n-1)p,即数列{an}为等差数列;
(2)解:由(1)可知Sn+1=$\frac{(n+1)({a}_{1}+{a}_{n+1})}{2}$=$\frac{n(n+1)}{2}$•d,
∴Sn+2=$\frac{(n+1)(n+2)}{2}$•d,
∴bn=$\frac{{S}_{n+2}}{{S}_{n+1}}$+$\frac{{S}_{n+1}}{{S}_{n+2}}$
=$\frac{\frac{(n+1)(n+2)}{2}•d}{\frac{n(n+1)}{2}•d}$+$\frac{\frac{n(n+1)}{2}•d}{\frac{(n+1)(n+2)}{2}•d}$
=$\frac{n+2}{n}$+$\frac{n}{n+2}$
=1+$\frac{2}{n}$+1-$\frac{2}{n+2}$
=2+2($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=2n+2(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)
=2n+2(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=2n+3-$\frac{4n+6}{(n+1)(n+2)}$.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.