题目内容
【题目】函数f(x)=2ax﹣x2+lnx,a为常数.
当a=时,求f(x)的最大值;
【答案】解:当a=时,f(x)=x﹣x2+lnx,则f(x)的定义域为:(0,+∞),
∴.
∴由f′(x)>0,得0<x<1;由f′(x)<0,得x>1;
∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.
∴f(x)的最大值为f(1)=0;
【解析】先求函数的导函数f′(x),并将其因式分解,再由f′(x)>0,得函数的单调增区间,由f′(x)<0,得函数的单调减区间,继而得到f(x)的最大值.
【考点精析】掌握函数的最大(小)值与导数是解答本题的根本,需要知道求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
【题目】已知函数f(x)=|x﹣a|,其中a>1
(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
【题目】某中学在校就餐的高一年级学生有440名,高二年级学生有460名,高三年级学生有500名;为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表(服务满意度为x,价格满意度为y).
y | 价格满意度 | |||||
1 | 2 | 3 | 4 | 5 | ||
服 | 1 | 1 | 1 | 2 | 2 | 0 |
2 | 2 | 1 | 3 | 4 | 1 | |
3 | 3 | 7 | 8 | 8 | 4 | |
4 | 1 | 4 | 6 | 4 | 1 | |
5 | 0 | 1 | 2 | 3 | 1 |
(1)求高二年级共抽取学生人数;
(2)求“服务满意度”为3时的5个“价格满意度”数据的方差;
(3)为提高食堂服务质量,现从x<3且2≤y<4的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.