题目内容
【题目】某校高二年级共有800名学生参加2019年全国高中数学联赛江苏赛区初赛,为了解学生成绩,现随机抽取40名学生的成绩(单位:分),并列成如下表所示的频数分布表:
分组 | |||||
频数 |
⑴试估计该年级成绩不低于90分的学生人数;
⑵成绩在的5名学生中有3名男生,2名女生,现从中选出2名学生参加访谈,求恰好选中一名男生一名女生的概率.
【答案】(1) 300人;(2)
【解析】
(1)由频数分布表可得40人中成绩不低于90分的学生人数为15人,由此可计算出该年级成绩不低于90分的学生人数;
(2)根据题意写出所有的基本事件,确定基本事件的个数,即可计算出恰好选中一名男生一名女生的概率。
⑴40名学生中成绩不低于90分的学生人数为15人;
所以估计该年级成绩不低于90分的学生人数为
⑵分别记男生为1,2,3号,女生为4,5号,从中选出2名学生,有如下基本事件
(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)
因此,共有10个基本事件,上述10个基本事件发生的可能性相同,且只有6个基本事件是选中一名男生一名女生(记为事件),
即(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)
∴
【题目】某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查结果只有“满意”和“不满意”两种,从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 5 | 9 | 11 | 9 | 7 | 9 |
满意人数 | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为,求随机变量的分布列及数学期望.