题目内容
【题目】有下列命题:
①乘积(a+b+c+d)(p+q+r)(m+n)展开式的项数是24;
②由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是36;
③某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为24;
④已知(1+x)8=a0+a1x+…+a8x8 , 其中a0 , a1 , …,a8中奇数的个数为2.
其中真命题的序号是 .
【答案】①②③④
【解析】解:①乘积(a+b+c+d)(p+q+r)(m+n)展开式的项数是4×3×2=24;故①正确,②如果5在两端,则1、2有三个位置可选,排法为2×A32A22=24种,
如果5不在两端,则1、2只有两个位置可选,首先排5,有 =3种,然后排1和2,有A22A22=12种,3×A22A22=12种,共计12+24=36种;故②正确;③将空位插到三个人中间,三个人有两个中间位置和两个两边位置,就是将空位分为四部分,五个空位四分只有1,1,1,2
空位五差别,只需要空位2分别占在四个位置就可以有四种方法,另外三个人排列A33=6,
根据分步计数可得共有4×6=24,故③正确,;④由(1+x)8=a0+a1x+a2x2+…+a8x8 .
可知:a0 , a1 , a2…a8均为二项式系数,
依次是c80 , c81 , c82…c88 .
∵C80=C88=1,C81=C87=8,C82=C86=28;C83=C85=56;C84=70
∴a0 , a1 , a2…a8中奇数只有a0 , a8两个,故④正确,
所以答案是:①②③④.
【考点精析】认真审题,首先需要了解命题的真假判断与应用(两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系).
【题目】通过随机询问110名性别不同的中学生是否爱好运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由K2= 得,K2= ≈7.8
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别有关”
B.有99%以上的把握认为“爱好运动与性别有关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别无关”
D.有99%以上的把握认为“爱好运动与性别无关”