题目内容
已知圆M过两点A(1,-1),B(-1,1),且圆心M在x+y-2=0上.
(1)求圆M的方程;
(2)设P是直线3x+4y+8=0上的动点,PA′、PB′是圆M的两条切线,A′、B′为切点,求四边形PA′MB′面积的最小值.
(1)求圆M的方程;
(2)设P是直线3x+4y+8=0上的动点,PA′、PB′是圆M的两条切线,A′、B′为切点,求四边形PA′MB′面积的最小值.
(1)(x-1)2+(y-1)2=4.(2)2![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041549876322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041549876322.png)
(1)设圆M的方程为(x-a)2+(y-b)2=r2
(r>0),根据题意得
解得a=b=1,r=2.
故所求圆M的方程为(x-1)2+(y-1)2=4.
(2)由题知,四边形PA′MB′的面积为S=S△PA′M+S△PB′M=
|A′M||PA′|+
|B′M||PB′|.又|A′M|=|B′M|=2,|PA′|=|PB′|,所以S=2|PA′|,而|PA′|=
=
,即S=2
.因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,所以|PM|min=
=3,所以四边形PA′MB′面积的最小值为S=2
=2
=2![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041549876322.png)
(r>0),根据题意得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240415498911425.png)
故所求圆M的方程为(x-1)2+(y-1)2=4.
(2)由题知,四边形PA′MB′的面积为S=S△PA′M+S△PB′M=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041549907339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041549907339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041549954834.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041549969710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041549969710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041549985863.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041549969710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041550032486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041549876322.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目