题目内容
【题目】四棱锥中,底面为直角梯形,,,,平面,,为中点.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的余弦值.
【答案】(1)见证明;(2)
【解析】
(1)在中,由余弦定理,,又,,得到,,
由线面垂直的判定定理,得平面,进而利用面面垂直的判定定理,证得平面平面.
(2)以为原点,,,为,,轴,建立空间直角坐标系,求得平面的法向量为和平面平面的一个法向量为,利用向量的夹角公式,即可求解.
(1)在直角梯形中,,,
在中,由余弦定理,,又,,
有,是等腰三角形,所以,,
由线面垂直的判定定理,得平面,
又由面面垂直的判定定理,即可得到平面平面.
(2)以为原点,,,为,,轴,建立空间直角坐标系,
则,,,,,
有,,,
令平面的法向量为,由,可得一个,
由(1)可知平面的一个法向量为,
所以,
所以二面角的余弦值为.
【题目】某研究机构随机调查了,两个企业各100名员工,得到了企业员工月均收入的频数分布表以及企业员工月均收入的统计图如下:
企业:
工资 | 人数 |
5 | |
10 | |
20 | |
42 | |
18 | |
3 | |
1 | |
1 |
企业:
(1)若将频率视为概率,现从企业中随机抽取一名员工,求该员工月均收入不低于5000元的概率;
(2)(i)若从企业的月均收入在员工中,按分层抽样的方式抽取7人,而后在此7人中随机抽取2人,则2人月均收入都不在的概率是多少?
(ii)若你是一名即将就业的大学生,根据上述调查结果,并结合统计学相关知识,你会选择去哪个企业就业,并说明理由.
【题目】我市南澳县是广东唯一的海岛县,海区面积广阔,发展太平洋牡蛎养殖业具有得天独厚的优势,所产的“南澳牡蛎”是中国国家地理标志产品,产量高、肉质肥、营养好,素有“海洋牛奶精品”的美誉.根据养殖规模与以往的养殖经验,产自某南澳牡蛎养殖基地的单个“南澳牡蛎”质量(克)在正常环境下服从正态分布.
(1)购买10只该基地的“南澳牡蛎”,会买到质量小于20g的牡蛎的可能性有多大?
(2)2019年该基地考虑增加人工投入,现有以往的人工投入增量x(人)与年收益增量y(万元)的数据如下:
人工投入增量x(人) | 2 | 3 | 4 | 6 | 8 | 10 | 13 |
年收益增量y(万元) | 13 | 22 | 31 | 42 | 50 | 56 | 58 |
该基地为了预测人工投入增量为16人时的年收益增量,建立了y与x的两个回归模型:
模型①:由最小二乘公式可求得y与x的线性回归方程:;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线:的附近,对人工投入增量x做变换,令,则,且有.
(i)根据所给的统计量,求模型②中y关于x的回归方程(精确到0.1);
(ii)根据下列表格中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测人工投入增量为16人时的年收益增量.
回归模型 | 模型① | 模型② |
回归方程 | ||
| 182.4 | 79.2 |
附:若随机变量,则,;
样本的最小二乘估计公式为:,
另,刻画回归效果的相关指数