题目内容
【题目】函数 的定义域是( )
A.{x|x<﹣4或x>3}
B.{x|﹣4<x<3}
C.{x|x≤﹣4或x≥3}
D.{x|﹣4≤x≤3}
【答案】C
【解析】解:要使函数有意义,则x2+x﹣12≥0, 即(x﹣3)(x+4)≥0,
解得x≥3或x≤﹣4.
故函数的定义域为{x|x≤﹣4或x≥3}.
故选:C.
【考点精析】本题主要考查了函数的定义域及其求法的相关知识点,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零才能正确解答此题.
练习册系列答案
相关题目