题目内容
已知f(x)是定义在R上的奇函数,且f(x+2)+f(x)=0,当x∈[0,1]时,f(x)=2x-1,则f(log125)= .
【解析】略
A.2 B.1 C.0 D.-1
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,满足f(a·b)=af(b)+bf(a),f(2)=2,a=(n∈N*),b=(n∈N*);考查下列结论:
①f(0)=f(1);②f(x)为偶函数;③数列{a}为等比数列;④{b}为等差数列.
其中正确的是 .
(本小题满分14分)已知f(x)是定义在( 0,+∞)上的增函数,
且f() = f(x)-f(y)
(1)求f(1)的值;
(2)若f(6)= 1,解不等式 f( x+3 )-f() <2
已知f (x)是定义在∪上的奇函数,当时,f (x)的图象如图所示,那么f (x)的值域是