题目内容

(2012•包头一模)选修4-5;不等式选讲.
设不等式|2x-1|<1的解集是M,a,b∈M.
(I)试比较ab+1与a+b的大小;
(II)设max表示数集A的最大数.h=max{
2
a
a2+b2
ab
2
b
}
,求证:h≥2.
分析:(I)解绝对值不等式求出M=( 0,1),可得 0<a<1,0<b<1,再由(ab+1)-(a+b)=(a-1)(b-1)>0可得ab+1与a+b的大小.
(II)由题意可得 h≥
2
a
,h≥
a2+b2
ab
,h≥
2
b
,可得 h3
2
a
a2+b2
ab
2
b
=
 a2+2)
ab
≥8,从而证得 h≥2.
解答:解:(I)由不等式|2x-1|<1 可得-1<2x-1<1,解得 0<x<1,从而求得 M=( 0,1).
由 a,b∈M,可得 0<a<1,0<b<1.
∴(ab+1)-(a+b)=(a-1)(b-1)>0,
∴(ab+1)>(a+b).
(II)设max表示数集A的最大数,∵h=max{
2
a
a2+b2
ab
2
b
}

∴h≥
2
a
,h≥
a2+b2
ab
,h≥
2
b

∴h3
2
a
a2+b2
ab
2
b
=
 a2+2)
ab
≥8,故 h≥2.
点评:本题主要考查绝对值不等式的解法,不等式的性质以及基本不等式的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网