ÌâÄ¿ÄÚÈÝ
12£®ÒÑÖªfn£¨x£©=£¨1+2x£©£¨1+22x£©¡£¨1+2nx£©£¨n¡Ý2£¬n¡ÊN*£©£®£¨1£©Éèfn£¨x£©Õ¹¿ªÊ½Öк¬xÏîµÄϵÊýΪan£¬Çóan£®
£¨2£©Éèfn£¨x£©Õ¹¿ªÊ½Öк¬x2ÏîµÄϵÊýΪbn£¬ÇóÖ¤£ºbn+1=bn+2n+1an£®
£¨3£©ÊÇ·ñ´æÔÚ³£Êýa£¬b£¬Ê¹bn=$\frac{8}{3}$£¨2n-1-1£©£¨2na+b£©¶ÔÒ»ÇÐn¡Ý2ÇÒn¡ÊN*ºã³ÉÁ¢£¿Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»Èô´æÔÚ£¬Çó³öa£¬bµÄÖµ£¬²¢¸ø³öÖ¤Ã÷£®
·ÖÎö ÕâÊÇÒ»¸öÊýÁÐÓë¶þÏîʽµÄ×ÛºÏÌ⣬µÚ£¨1£©¡¢£¨2£©Ð¡ÌâÈÝÒ×½â¾ö£¬µÚ£¨3£©Ð¡ÌâÊÇÒ»¸ö̽Ë÷ÐÔÎÊÌ⣬¿ÉÏÈÓÃÌØÊâÖµ·¨Çó³öa¡¢bµÄÖµ£¬ÔÙÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®
½â´ð ½â£º£¨1£©¸ù¾Ý¶àÏîʽ³Ë·¨µÄÔËËã·¨Ôò£¬fn£¨x£©µÄÕ¹¿ªÊ½ÖÐxÏîµÄϵÊýΪan=2+22+23+¡+2n=2n+1-2£®
£¨2£©ÓÃΪan¡¢bn·Ö±ðÊÇfn£¨x£©µÄÕ¹¿ªÊ½ÖÐxÏî¡¢x2ÏîµÄϵÊý£¬Ôò¿ÉÉèfn£¨x£©=1+anx+bnx2+¡£¬Ôò
fn+1£¨x£©=fn£¨x£©•£¨1+2n+1£©=1+£¨an+2n+1£©x+£¨bn+2n+1•an£©x2+¡£¬?
¡àbn+1=bn+2n+1an£®
£¨3£©¼ÙÉè´æÔÚa¡¢b£¬Ê¹µÃbn=$\frac{8}{3}$£¨2n-1-1£©£¨2na+b£©¶ÔÒ»ÇÐn¡Ý2ÇÒn¡ÊN*ºã³ÉÁ¢£¬Ôò
b2=$\frac{8}{3}$£¨2-1£©£¨22a+b£©£¬¼´4a+b=$\frac{3}{8}$b2£®¢Ù
ͬÀí8a+b=$\frac{1}{8}$b3£®¢Ú
ÓÖÓÉf2£¨x£©=1+6x+8x2£¬µÃa2=6£¬b2=8£®´Ó¶øb3=56£¬
´úÈë¢Ù¡¢¢ÚµÃa=1£¬b=-1£®¡¡¡¡
²ÂÏ룺bn=$\frac{8}{3}$£¨2n-1-1£©£¨2n-1£©£¨n¡Ý2£©£®
Ö¤Ã÷ÈçÏ£º£¨i£©n=2ʱ£¬ÒѾ֤Ã÷³ÉÁ¢£»
£¨ii£©¼ÙÉèn=kʱ½áÂÛ³ÉÁ¢£¬¼´bk=$\frac{8}{3}$£¨2k-1-1£©£¨2k-1£©£¬
Ôòn=k+1ʱ£¬bk+1=bk+2k+1ak=$\frac{8}{3}$£¨2k-1-1£©£¨2k-1£©+2k+1£¨2k+1-2£©=$\frac{8}{3}$£¨2k-1£©£¨2k+1-1£©£¬
¡àn=k+1ʱ£¬½áÂÛ³ÉÁ¢£¬
ÓÉ£¨i£©£¨ii£©¿ÉµÃbn=$\frac{8}{3}$£¨2n-1-1£©£¨2n-1£©£¨n¡Ý2£©£®
µãÆÀ ±¾Ì⿼²é¶þÏîʽ¶¨ÀíµÄÔËÓ㬿¼²é¹éÄɲÂÏ룬¿¼²éÊýѧ¹éÄÉ·¨µÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÓÐÄѶȣ®
A£® | $\frac{8}{35}$ | B£® | $\frac{6}{35}$ | C£® | $\frac{4}{35}$ | D£® | $\frac{2}{35}$ |