题目内容
【题目】已知椭圆的离心率为,且经过点.
(1)求椭圆的方程;
(2)过点的直线与椭圆交于不同两点、,且满足条件的点在椭圆上,求直线的方程.
【答案】(1);(2).
【解析】
(1)根据题意得出关于、、的方程组,解出、的值,进而可得出椭圆的标准方程;
(2)设点、,设直线的方程为,将直线的方程与椭圆的方程联立,列出韦达定理,求出点的坐标,再将点的坐标代入椭圆方程,求出的值,进而可得出直线的方程.
(1)由椭圆的离心率为,点在椭圆上,
所以,解得,因此,椭圆的标准方程为;
(2)显然直线的斜率存在,设直线的斜率为,
则直线l的方程为,设,,,
由消去得,
,解得或.
所以,,
因为,所以,,所以,点的坐标为,
将点的坐标代入椭圆的方程得,化简得,解得.
故直线的方程为.
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
表中,.
(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,
【题目】某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人次数学考试的成绩,统计结果如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成绩(分) | |||||
乙的成绩(分) |
(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.
(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:
方案一:每人从道备选题中任意抽出道,若答对,则可参加复赛,否则被淘汰.
方案二:每人从道备选题中任意抽出道,若至少答对其中道,则可参加复赛,否则被润汰.
已知学生甲、乙都只会道备选题中的道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.