题目内容
【题目】如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是线段EF的中点.
(1)求证AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大小;
(3)试在线段AC上一点P,使得PF与CD所成的角是60°.
【答案】
(1)证明:建立如图所示的空间直角坐标系
设AC∩BD=N,连接NE,
则点N、E的坐标分别是 、(0,0,1),
∴ =
,
又点A、M的坐标分别是
、
∴ =
∴ =
且NE与AM不共线,
∴NE∥AM
又∵NE平面BDE,AM平面BDE,
∴AM∥平面BDF
(2)解:∵AF⊥AB,AB⊥AD,AF∩AD=A,
∴AB⊥平面ADF
∴ 为平面DAF的法向量
∵ =
=0,
∴ =
=0得
,
∴NE为平面BDF的法向量
∴cos< >=
∴ 的夹角是60°
即所求二面角A﹣DF﹣B的大小是60°
(3)解:设P(x,x,0), ,
,则
cos =|
|,解得
或
(舍去)
所以当点P为线段AC的中点时,直线PF与CD所成的角为60°
【解析】(I)以C为坐标原点,建立空间直角坐标系,求出各点的坐标,进而求出直线AM的方向向量及平面BDE的法向量,易得这两个向量垂直,即AM∥平面BDE;(2)求出平面ADF与平面BDF的法向量,利用向量夹角公式求出夹角,即可得到二面角A﹣DF﹣B的大小;(3)点P为线段AC的中点时,直线PF与CD所成的角为60°,我们设出点P的坐标,并由此求出直线PF与CD的方向向量,再根据PF与CD所成的角是60°构造方程组,解方程即可得到结论.
【考点精析】根据题目的已知条件,利用向量语言表述线线的垂直、平行关系和用空间向量求直线间的夹角、距离的相关知识可以得到问题的答案,需要掌握设直线的方向向量分别是
,则要证明
∥
,只需证明
∥
,即
;则要证明
,只需证明
,即
;已知
为两异面直线,A,C与B,D分别是
上的任意两点,
所成的角为
,则
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:
打算观看 | 不打算观看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.