题目内容

14.(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为(1,1).

分析 首先运用x=ρcosθ,y=ρsinθ,将极坐标方程化为普通方程,然后组成方程组,解之求交点坐标.

解答 解:曲线C1:ρsin2θ=cosθ,即为ρ2sin2θ=ρcosθ,
化为普通方程为:y2=x,
曲线ρsinθ=1,化为普通方程为:y=1,
联立$\left\{\begin{array}{l}{{y}^{2}=x}\\{y=1}\end{array}\right.$,
即交点的直角坐标为(1,1).
故答案为:(1,1).

点评 本题考查极坐标方程和普通方程的互化,考查解方程的运算能力,属于基础题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网