题目内容
17.在一次百米比赛中,甲,乙等6名同学采用随机抽签的方式决定各自的跑道,跑道编号为1至6,每人一条跑道(Ⅰ)求甲在1或2跑道且乙不在5或6跑道的概率;
(Ⅱ)求甲乙之间恰好间隔两人的概率.
分析 先求出没有限制条件的种数为720种,
(Ⅰ)先安排甲,再安排乙,剩下的全排,根据概率公式计算即可,
(Ⅱ)先选2人放在甲乙之间,并捆绑在一起,看作一个复合元素,再和剩下的2人全排,根据概率公式计算即可,
解答 解:没有限制条件的种数为A66=720种,
(Ⅰ)先安排甲,再安排乙,剩下的全排,故有C21C31A44=144种,
根据概率公式,故甲在1或2跑道且乙不在5或6跑道的概率P=$\frac{144}{720}$=$\frac{1}{5}$,
(Ⅱ)先选2人放在甲乙之间,并捆绑在一起,看作一个复合元素,再和剩下的2人全排,故有A42A22A33=144种,
根据概率公式,故甲乙之间恰好间隔两人的概率P=$\frac{144}{720}$=$\frac{1}{5}$.
点评 本题考查古典概型的概率问题,关键是根据排列组合求出相应的种数,属于中档题.
练习册系列答案
相关题目
5.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如图是根据哈尔滨三中学生社团某日早6点至晚9点在南岗、群力两个校区附近的PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图,南岗、群力两个校区浓度的方差较小的是( )
A. | 南岗校区 | B. | 群力校区 | ||
C. | 南岗、群力两个校区相等 | D. | 无法确定 |
12.已知复数z满足:zi=1+i(i是虚数单位),则z的虚部为( )
A. | -i | B. | i | C. | 1 | D. | -1 |
2.已知复数z=$\frac{1-2i}{3+4i}$(i是虚数单位),则z的共轭复数的虚部是( )
A. | -$\frac{2}{5}$i | B. | $\frac{2}{5}$i | C. | -$\frac{2}{5}$ | D. | $\frac{2}{5}$ |
4.空气质量指数PM2.5 (单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
甲、乙两城市2015年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:
(Ⅰ)根据你所学的统计知识分别写出甲、乙两城市15天内空气质量的中位数,并分析两城市空气质量哪个较好?
(Ⅱ)王先生到乙地出差5天,已知该5天是空气质量最好的五天,王先生要在这5天中选择两天出去游玩,求这两天恰好有一天空气质量类别为优的概率.
PM2.5日均浓度 | 0~35 | 35~75 | 75~115 | 115~150 | 150~250 | >250 |
空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
空气质量类别 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
(Ⅰ)根据你所学的统计知识分别写出甲、乙两城市15天内空气质量的中位数,并分析两城市空气质量哪个较好?
(Ⅱ)王先生到乙地出差5天,已知该5天是空气质量最好的五天,王先生要在这5天中选择两天出去游玩,求这两天恰好有一天空气质量类别为优的概率.