题目内容
14.“10a>10b”是“lga>lgb”的( )A. | 必要不充分条件 | B. | 充分不必要条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 根据充分条件和必要条件的定义结合指数不等式和对数不等式的性质进行判断即可.
解答 解:由10a>10b得a>b,
由lga>lgb得a>b>0,
则“10a>10b”是“lga>lgb”的必要不充分条件,
故选:A
点评 本题主要考查充分条件和必要条件的判断,比较基础.
练习册系列答案
相关题目
4.已知直线l:y=-x+a与圆C:x2+y2=2相交于相异两点M、N,点O是坐标原点,且满足|$\overrightarrow{OM}$+$\overrightarrow{ON}$|>|$\overrightarrow{OM}$-$\overrightarrow{ON}$|,则实数a的取值范围是( )
A. | (-2,-$\sqrt{2}$)∪($\sqrt{2}$,2) | B. | (-$\sqrt{2}$,$\sqrt{2}$0 | C. | ($\sqrt{2}$,-1)∪(1,$\sqrt{2}$) | D. | (-1,1) |
2.对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是( )
A. | r2<r4<0<r3<r1 | B. | r4<r2<0<r1<r3 | C. | r4<r2<0<r3<r1 | D. | r2<r4<0<r1<r3 |
9.曲线y=ax在x=0点处的切线方程是xln2+y-1=0,则a=( )
A. | $\frac{1}{2}$ | B. | 2 | C. | ln2 | D. | ln$\frac{1}{2}$ |
19.利用演绎推理的“三段论”可得到结论:函数f(x)=lg$\frac{1-x}{1+x}$的图象关于坐标原点对称,那么,这个三段论的小前提是( )
A. | f(x)是增函数 | B. | f(x)是减函数 | C. | f(x)是奇函数 | D. | f(x)是偶函数 |
4.已知函数y=3sinxcosx+sinx-cosx,则它的值域为( )
A. | $[{-\frac{3}{2}-\sqrt{2},-\frac{3}{2}+\sqrt{2}}]$ | B. | $[{-\frac{3}{2}-\sqrt{2},\frac{5}{3}}]$ | C. | $[{\frac{3}{2}+\sqrt{2},\frac{5}{3}}]$ | D. | $[{-\frac{10}{3},-\frac{3}{2}-\sqrt{2}}]$ |