题目内容
【题目】已知椭圆的右焦点为,A是椭圆短轴的一个端点,直线AF与椭圆另一交点为B,且.
(1)求椭圆方程;
(2)若斜率为1的直线l交椭圆于C,D,且CD为底边的等腰三角形的顶点为,求的值.
【答案】(1);(2)0
【解析】
(1)右焦点为,则,设,,由可得点坐标(用表示),代入椭圆方程可解得;
(2)直线l方程,,直线方程与椭圆方程联立后可得(注意),中点为,由可求得(满足),然后计算的值.
(1)∵右焦点为,设,∴,
∵A是椭圆短轴的一个端点,直线AF与椭圆另一交点为B,且.
设,∴,∴.
代入椭圆方程,得,
∴椭圆方程为.
(2)设直线l方程,得,
,.
∴,,,,
又∵CD为底边的等腰三角形的顶点为,
∴设CD中点为M,则,即.,∴,
∴,得,满足.
∴,,,,
.
【题目】某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.
组别 | 分组 | 回答正确的人数 | 回答正确的人数占本组的概率 |
第1组 | [15,25) | 5 | 0.5 |
第2组 | [25,35) | 0.9 | |
第3组 | [35,45) | 27 | |
第4组 | [45,55) | 0.36 | |
第5组 | [55,65) | 3 |
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.
(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.
(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.
(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.
附:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |