题目内容

【题目】已知函数,(其中为常数),

(1)求的最大值;

(2)若在区间上的最大值为,求的值;

【答案】(1) 2a=e2.

【解析】试题分析:(1)求导数,确定导函数零点,列表分析可得函数单调性,根据单调性确定函数最值(2)先求导数,根据a的大小讨论导数零点情况,根据零点情况讨论函数单调性,根据单调性确定函数最值,根据最大值为,解得的值

试题解析:1定义域(0+∞);

,得

时, ,在是增函数;

时, ,在是减函数;

2=ax+lnx

①若,则f′x0,从而fx)在(0e]上是增函数,

fxmax=fe=ae+10,不合题意,

②若,则由,即

,即

从而fx)在(0)上增函数,在(﹣e]为减函数

,则∴a=﹣e2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网