题目内容
【题目】设函数f(x)= sinxcsox+cos2x+m
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[﹣ , ]时,函数f(x)的最小值为2,求函数f(x)的最大值及对应的x的值.
【答案】
(1)解:由于函数f(x)= sinxcsox+cos2x+m= sin2x+ +m
=sin(2x+ )+m+ ,
∴最小正周期为 =π.
由2kπ﹣ ≤2x+ ≤2kπ+ 得:kπ﹣ ≤x≤kπ+ ,
故函数f(x)的单调增区间为[kπ﹣ ,kπ+ ],k∈Z.
(2)解:当x∈[﹣ , ]时,﹣ ≤2x+ ≤ ,函数f(x)的最小值为2,求函数f(x)的最大值及对应的x的值,
∴﹣ ≤sin(2x+ )≤1,
故当sin(2x+ )=﹣ 时,原函数取最小值2,即﹣ +m+ =2,∴m=2,
故f(x)=sin(2x+ )+ ,
故当sin(2x+ )=1时,f(x)取得最大值为 ,此时,2x+ = ,x=
【解析】(1)由条件利用三角恒等变换,正弦函数的周期性、单调性求得函数f(x)的最小正周期和单调递增区间.(2)当x∈[﹣ , ]时,利用正弦函数的定义域和值域,求得函数f(x)的最大值及对应的x的值.
【考点精析】通过灵活运用两角和与差的正弦公式和三角函数的最值,掌握两角和与差的正弦公式:;函数,当时,取得最小值为;当时,取得最大值为,则,,即可以解答此题.
练习册系列答案
相关题目