题目内容

【题目】以下三个关于圆锥曲线的命题中:
①设A、B为两个定点,K为非零常数,若|PA|﹣|PB|=K,则动点P的轨迹是双曲线.
②方程2x2﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率.
③双曲线=1与椭圆+y2=1有相同的焦点.
④已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切.
其中真命题为 (写出所以真命题的序号)

【答案】②③④
【解析】A、B为两个定点,K为非零常数,若|PA|﹣|PB|=K,当K=|AB|时,动点P的轨迹是两条射线,故①错误;
方程2x2﹣5x+2=0的两根为和2,可分别作为椭圆和双曲线的离心率,故②正确;
双曲线=1的焦点坐标为(± , 0),椭圆﹣y2=1的焦点坐标为(± , 0),故③正确;
设AB为过抛物线焦点F的弦,P为AB中点,A、B、P在准线l上射影分别为M、N、Q,
∵AP+BP=AM+BN
∴PQ=AB,
∴以AB为直径作圆则此圆与准线l相切,故④正确
故正确的命题有:②③④
故答案为:②③④
根据双曲线的定义,可判断①的真假;解方程求出方程的两根,根据椭圆和双曲线的简单性质,可判断②的真假;根据已知中双曲线和椭圆的标准方程,求出它们的焦点坐标,可判断③的真假;设P为AB中点,A、B、P在准线l上射影分别为M、N、Q,根据抛物线的定义,可知AP+BP=AM+BN,从而 PQ=AB,所以以AB为直径作圆则此圆与准线l相切.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网