题目内容
【题目】如图,四棱锥的底面为菱形 且∠ABC=120°,PA⊥底面ABCD,AB=2,PA=,
(1)求证:平面PBD⊥平面PAC;
(2)求三棱锥P--BDC的体积。
(3)在线段PC上是否存在一点E,使PC⊥平面EBD成立.如果存在,求出EC的长;如果不存在,请说明理由。
【答案】(1)见解析;(2)1;(3) .
【解析】试题分析:
(1)要证面面垂直,一般先证线面垂直,也即要证线线垂直,由菱形可得,又由平面得,从而可得直线与平面垂直,从而得证面面垂直;
(2)三棱锥的底面是,高为,由体积公式可得体积;
(3)假设存在,由线面垂直可得线线垂直,设,则,在中由相似三角形可求得长,反之只要有,就可得平面.
试题解析:
(1) 略证:通过证BD⊥AC,BD⊥PA,得出BD⊥平面PAC,又BD在平面PBD内,所以平面PBD⊥平面PAD
(2)
(3)假设存在,设,则 ,Δ ∽ΔCPA , .
练习册系列答案
相关题目
【题目】根据以往的经验,某工程施工期间的降水量(单位:)对工期的影响如下表:
降水量 | ||||
工期延误天数 | 0 | 2 | 6 | 10 |
历年气象资料表明,该工程施工期间降水量小于300,700,900的概率分别为0.3,0.7,0.9,求:
(1)工期延误天数的均值与方差;
(2)在降水量至少是300的条件下,工期延误不超过6天的概率.