题目内容

18.已知A={2,4,a3-2a2-a+7},B={1,a+3,a2-2a+2,a3+a2+3a+7},且A∩B={2,5}.求A∪B.

分析 由已知,根据集合的交集的概念,得出a3-2a2-a+7=5,解出a,再代入验证是否符合要求:应满足元素的互异性,满足A∩B={2,5}.进而得到答案.

解答 解:由题意,知a3-2a2-a+7=5,
解得a=-1,1,2.
当a=-1时,A={2,4,5},B={-4,2,4,5},此时A∩B={2,4,5} 与已知A∩B={2,5}矛盾;
当a=1时  B={-4,1,4,12},A∩B={4} 与已知A∩B={2,5}矛盾;
当a=2时,符合题意,故a=2.
∴A∪B={2,4,5}∪{-4,2,5,25}={-4,2,4,5,25}.

点评 在处理集合运算时,对于能化简的集合要先进行化简.如果集合中含有字母,要注意对字母进行讨论,如何选择正确的分类标准是关键.求出待定系数的值后,要进行检验.其中,集合中元素的互异性是检验的一个依据.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网