题目内容

13.要将甲乙两种大小不同的钢板截成A、B两种规格,每种钢板可同时截得A、B两种规格的小钢板的块数如表所示.
规格类型
钢板类型
AB
21
13
已知库房中现有甲乙两种钢板的数量分别为5张和10张,市场急需AB两种规格的成品数分别为15块和27块,问各截两种钢板多少张可得到所需的成品数,且使所用的两种钢板的总张数最少?

分析 设甲种钢板需要x张,乙种钢板需要y张;共需要z张,从而可得约束条件及目标函数,结合图象得到两种钢板的张数即可.

解答 解:设甲种钢板需要x张,乙种钢板需要y张;共需要z张;
则由题意可得,
$\left\{\begin{array}{l}{x≤5}\\{y≤10}\\{2x+y≥15}\\{x+3y≥27}\\{x,y∈N}\end{array}\right.$;
z=x+y;
作出其平面区域可得,

结合图象可得,满足条件的x,y值有:
(3,9),(3,10),(4,10),(4,8),(4,9),(5,10),(5,9),(5,8).
故z的最小值为3+9=4+8=12;
故各截两种钢板3张,9张或4张,8张时可得到所需的成品数,且使所用的两种钢板的总张数最少.

点评 本题考查了线性规划在实际问题中的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网