题目内容
【题目】如图,三个校区分别位于扇形OAB的三个顶点上,点Q是弧AB的中点,现欲在线段OQ上找一处开挖工作坑P(不与点O,Q重合),为小区铺设三条地下电缆管线PO,PA,PB,已知OA=2千米,∠AOB=,记∠APQ=θrad,地下电缆管线的总长度为y千米.
(1)将y表示成θ的函数,并写出θ的范围;
(2)请确定工作坑P的位置,使地下电缆管线的总长度最小.
【答案】(1)(2)P与O的距离为时,地下电缆管线的总长度最小
【解析】
(1)首先根据Q为弧AB的中点,得到知PA=PB,∠AOP=∠BOP=,利用正弦定理得到,根据OA=2,得到PA=,OP=,从而得到y=PA+PB+OP=2PA+OP==,根据题意确定出;
(2)对函数求导,令导数等于零,求得,确定出函数的单调区间,从而求得函数的最值.
(1)因为Q为弧AB的中点,由对称性,知PA=PB,∠AOP=∠BOP=,
又∠APO=,∠OAP=,
由正弦定理,得:,又OA=2,
所以,PA=,OP=,
所以,y=PA+PB+OP=2PA+OP==,
∠APQ>∠AOP,所以,,∠OAQ=∠OQA=,
所以,;
(2)令,
,得:,
在上递减,在上递增
所以,当,即OP=时,有唯一的极小值,
即是最小值:=2,
答:当工作坑P与O的距离为时,地下电缆管线的总长度最小.
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100的有40人;在45名女性驾驶员中,平均车速不超过100的有25人.
(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100的人与性别有关.
平均车速超过100人数 | 平均车速不超过100人数 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100的车辆数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
参考公式与数据:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表.请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;
(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
附参考公式及数据:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |