题目内容

18.在等比数列{bn}中,b1b9=64,b3+b7=20,则b11的值为(  )
A.64B.1C.64或1D.无法确定

分析 由已知条件利用等比数列的性质求出首项和公比,由此利用等比数列的通项公式能求出b11的值.

解答 解:∵在等比数列{bn}中,b1b9=64,b3+b7=20,
∴$\left\{\begin{array}{l}{{b}_{3}•{b}_{7}=64}\\{{b}_{3}+{b}_{7}=20}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{b}_{3}={b}_{1}{q}^{2}=4}\\{{b}_{7}={b}_{1}{q}^{6}=16}\end{array}\right.$,或$\left\{\begin{array}{l}{{b}_{3}={b}_{1}{q}^{2}=16}\\{{b}_{7}={{b}_{1}{q}^{6}=4}_{\;}^{\;}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{b}_{1}=2}\\{{q}^{2}=2}\end{array}\right.$或$\left\{\begin{array}{l}{{b}_{1}=32}\\{{q}^{2}=\frac{1}{2}}\end{array}\right.$,
∴当$\left\{\begin{array}{l}{{b}_{1}=2}\\{{q}^{2}=2}\end{array}\right.$时,${b}_{11}={b}_{1}{q}^{10}={b}_{1}({q}^{2})^{5}$=2×25=64,
当$\left\{\begin{array}{l}{{b}_{1}=32}\\{{q}^{2}=\frac{1}{2}}\end{array}\right.$时,${b}_{11}={b}_{1}{q}^{10}={b}_{1}({q}^{2})^{5}$=32×$(\frac{1}{2})^{5}$=1.
∴b11的值为64或1.
故选:C.

点评 本题考查等比数列的等11项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网