题目内容
18.在等比数列{bn}中,b1b9=64,b3+b7=20,则b11的值为( )A. | 64 | B. | 1 | C. | 64或1 | D. | 无法确定 |
分析 由已知条件利用等比数列的性质求出首项和公比,由此利用等比数列的通项公式能求出b11的值.
解答 解:∵在等比数列{bn}中,b1b9=64,b3+b7=20,
∴$\left\{\begin{array}{l}{{b}_{3}•{b}_{7}=64}\\{{b}_{3}+{b}_{7}=20}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{b}_{3}={b}_{1}{q}^{2}=4}\\{{b}_{7}={b}_{1}{q}^{6}=16}\end{array}\right.$,或$\left\{\begin{array}{l}{{b}_{3}={b}_{1}{q}^{2}=16}\\{{b}_{7}={{b}_{1}{q}^{6}=4}_{\;}^{\;}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{b}_{1}=2}\\{{q}^{2}=2}\end{array}\right.$或$\left\{\begin{array}{l}{{b}_{1}=32}\\{{q}^{2}=\frac{1}{2}}\end{array}\right.$,
∴当$\left\{\begin{array}{l}{{b}_{1}=2}\\{{q}^{2}=2}\end{array}\right.$时,${b}_{11}={b}_{1}{q}^{10}={b}_{1}({q}^{2})^{5}$=2×25=64,
当$\left\{\begin{array}{l}{{b}_{1}=32}\\{{q}^{2}=\frac{1}{2}}\end{array}\right.$时,${b}_{11}={b}_{1}{q}^{10}={b}_{1}({q}^{2})^{5}$=32×$(\frac{1}{2})^{5}$=1.
∴b11的值为64或1.
故选:C.
点评 本题考查等比数列的等11项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
A. | |x+1|>-2的解集是R | B. | |x|<-4的解集是∅ | ||
C. | |1-x|≤0的解集是[-1,1] | D. | |x-2|>0的解集是(-∞,2)∪(2,+∞) |