题目内容
16.已知M是△ABC内一点,且$\overrightarrow{AB}•\overrightarrow{AC}$=2$\sqrt{3}$,∠BAC=30°,若△MBC、△MAB、△MAC的面积分别为$\frac{1}{2}$、x、y.(1)求△ABC的面积S的值;
(I2)求$\frac{1}{x}+\frac{4}{y}$的最小值.
分析 (1)$\overrightarrow{AB}•\overrightarrow{AC}$=2$\sqrt{3}$,∠BAC=30°,可得$|\overrightarrow{AB}||\overrightarrow{AC}|$cos30°=2$\sqrt{3}$,可得$|\overrightarrow{AB}||\overrightarrow{AC}|$,即可得出S=$\frac{1}{2}AB•ACsinA$.
(2)由1═S△MBC+S△MAB+S△MAC,可得x+y=$\frac{1}{2}$.利用$\frac{1}{x}+\frac{4}{y}$=2(x+y)$(\frac{1}{x}+\frac{4}{y})$=2$(5+\frac{y}{x}+\frac{4x}{y})$,基本不等式的性质即可得出.
解答 解:(1)∵$\overrightarrow{AB}•\overrightarrow{AC}$=2$\sqrt{3}$,∠BAC=30°,
∴$|\overrightarrow{AB}||\overrightarrow{AC}|$cos30°=2$\sqrt{3}$,
∴$|\overrightarrow{AB}||\overrightarrow{AC}|$=4,
由题意可得:S=$\frac{1}{2}AB•ACsinA$=$\frac{1}{2}×4×sin3{0}^{°}$=1.
(2)由1═S△MBC+S△MAB+S△MAC,
∴1=$\frac{1}{2}$+x+y,
化为x+y=$\frac{1}{2}$.
∴$\frac{1}{x}+\frac{4}{y}$=2(x+y)$(\frac{1}{x}+\frac{4}{y})$=2$(5+\frac{y}{x}+\frac{4x}{y})$≥2$(5+2\sqrt{\frac{y}{x}•\frac{4x}{y}})$=18,当且仅当y=2x=$\frac{1}{3}$取等号.
∴$\frac{1}{x}+\frac{4}{y}$的最小值为18.
点评 本题考查了向量的数量积运算性质、三角形面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
A. | (0,8) | B. | [0,8] | C. | [0,8) | D. | (0,8] |
A. | (3,5) | B. | (-∞,2)∪(2,3) | C. | (2,3) | D. | (-∞,2)∪(3,5) |
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |