题目内容
P是双曲线右支上的一点,M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为( )
A.6 | B.7 | C.8 | D.9 |
D
解析试题分析:设双曲线的两个焦点分别是F1(-5,0)与F2(5,0),则这两点正好是两圆的圆心,当且仅当点P与M、F1三点共线以及P与N、F2三点共线时所求的值最大,此时|PM|-|PN|=(|PF1|+2)-(|PF2|-1)=6+3=9.
考点:1.双曲线的简单性质;2.两点间的距离公式.
练习册系列答案
相关题目
中心在原点的双曲线,一个焦点为,一个焦点到最近顶点的距离是,则双曲线的方程是( )
A. | B. |
C. | D. |
已知F1,F2为双曲线Ax2-By2=1的焦点,其顶点是线段F1F2的三等分点,则其渐近线的方程为( )
A.y=±2x | B.y=±x |
C.y=±x | D.y=±2x或y=±x |
抛物线y2=8x的焦点到准线的距离是( )
A.1 | B.2 | C.4 | D.8 |
设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为( )
A.y=x-1或y=-x+1 |
B.y=(x-1)或y=-(x-1) |
C.y=(x-1)或y=-(x-1) |
D.y=(x-1)或y=-(x-1) |
已知方程=1表示焦点在y轴上的椭圆,则实数k的取值范围是( )
A. | B.(1,+∞) | C.(1,2) | D. |
若已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是( )
A.(0,+∞) | B.(,+∞) |
C.(,+∞) | D.(,+∞) |
如图,已知点B是椭圆+=1(a>b>0)的短轴位于x轴下方的端点,过B作斜率为1的直线交椭圆于点M,点P在y轴上,且PM∥x轴,·=9,若点P的坐标为(0,t),则t的取值范围是( )
A.0<t<3 | B.0<t≤3 |
C.0<t< | D.0<t≤ |