题目内容
设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为( )
A.y=x-1或y=-x+1 |
B.y=(x-1)或y=-(x-1) |
C.y=(x-1)或y=-(x-1) |
D.y=(x-1)或y=-(x-1) |
C
解析
练习册系列答案
相关题目
双曲线的离心率为( )
A. | B. | C. | D. |
已知抛物线x2=4y上有一条长为6的动弦AB,则AB中点到x轴的最短距离为( )
A. | B. | C.1 | D.2 |
已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为( )
A.1 | B.3 | C.-4 | D.-8 |
已知点F(,0),直线l:x=-,点B是l上的动点,若过B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是( )
A.双曲线 | B.椭圆 |
C.圆 | D.抛物线 |